Year 11 Revision Conference 1 15th November How to revise in Science

How to revise in Science?

- Science exams combine three areas of assessment:
 - Knowledge and understanding of scientific ideas
 (recalling facts and theories)
 - Applying scientific ideas
 (core practicals describing and explaining in new contexts)
 40%
 - Analysing information and ideas
 (graphs and tables, drawing conclusions, improving procedures)
 20%
- 60% of the marks are for applying/interpreting information. This requires lots of practice, not just memorising facts.

Exam Technique

- Check the number of marks
- Read the question carefully
 - Underline key information
 - Look carefully at tables/graphs
 - Use the formula sheet provided
- Don't leave blanks
 - Always complete multiple choice questions
 - Write in key words/bullet points for longer questions if you are stuck
- Last 5 minutes: check the paper for gaps/mistakes

Confident: answer the question

Not confident: star ★ and come back to it later

Effective Revision Techniques

- Effective revision requires you to think about and process information, not just read or copy it.
- Summarising information from your revision guide, then answering questions, or teaching someone else, will help you to remember it for longer.

Revision Resources

(Pearson Edexcel 2016)

- Tassomai: regular retrieval practice questions
- BBC Bitesize: Revision notes with some practice questions
- Seneca Learning: Online questions linked to revision notes app.senecalearning.com/login
- Youtube videos (e.g. freesciencelessons, cognito, primrose kitten)
- Past paper questions (online or from your teacher)
- Revision Guides

How to use a revision guide

- 1. Read and create notes summarising the main information (written summary, mind map, flash cards, poster, presentation)
- 2. Label a blank copy of any diagrams/graphs/tables
- 3. Complete the practice questions at the bottom of each page
- Write your own questions based on the topic (and test with a partner)
- 5. Apply the knowledge to a past exam question

Example: Waves (p.188 H)

- Revision booklet: How to revise in Science
- Use the revision guide extract to complete the gaps in the notes on waves (and add labels to the diagram)
- Answer the 'Now try this' questions:
 - What does a transverse wave look like? (check the top of the sheet)
 - Use arrows to show the direction of the wave and particle: \Rightarrow and \diamondsuit
- Write your own question based on the notes
- Try the past paper questions (next page) using the notes to help you

Waves transfer and information, but not Evidence – a ball on a pond bobs <i>up and down</i> while spread out.		
Waves can be described by:		
Frequency: The number of waves that pass a point each Measured in (Hz).		
Speed: measured in metres per second (/)		
W: The distance from a point on one wave to the same point on the next.		
Amplitude: of the distance from the top to the bottom of a wave.		
Period : The time taken for one to pass a point. Period = 1 / frequency.		
Longitudinal waves: Waves in which particles move back and forth in the direction the wave is travelling. Examples: waves, seismic waves LONGitudinal – particles move		Transverse waves: Waves in which particles move at angles to the direction the is travelling. E.g. water surface waves, waves, seismic waves TranSverSe – particles move

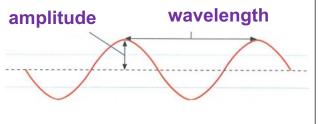
Waves transfer **energy** and information, but not **matter**. Evidence – a ball on a pond bobs *up and down* while **ripples** spread out.

Waves can be described by:

Frequency: The number of waves that pass a point each **second**. Measured in **hertz** (Hz).

Speed: measured in metres per second (m / s)

Wavelength: The distance from a point on one wave to the same point on the next.


Amplitude: half of the distance from the top to the bottom of a wave.

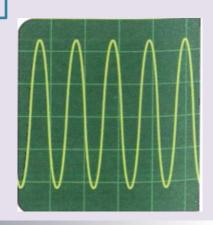
Period: The time taken for one wavelength to pass a point. Period = 1 / frequency.

Longitudinal waves: Waves in which particles move back and forth in the **same** direction the wave is travelling.

Examples: **sound** waves, seismic **P** waves

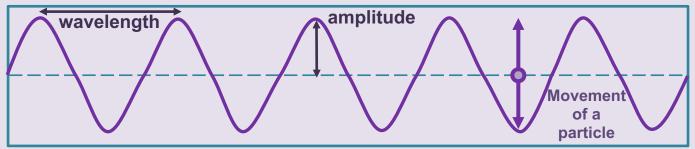
LONGitudinal – particles move along the same direction as the wave.

Transverse waves: Waves in which particles move at **right** angles to the direction the **wave** is travelling.

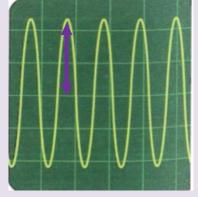

E.g. water surface waves, **electromagnetic** waves, seismic **S** waves

TranSverSe – particles move across the direction the wave is travelling

- 1 (a) Sketch a transverse wave and mark the amplitude and wavelength on it
- (b) <u>Draw an arrow</u> to show <u>which way the wave moves</u>
- (c) <u>Draw a small particle</u> on the wave, with <u>arrows to show which way it moves</u>.


2. The graph shows a wave. Each vertical square represents 1mm.

Work out the amplitude of the wave.


- 1 (a) Sketch a transverse wave and mark the amplitude and wavelength on it
- (b) <u>Draw an arrow</u> to show <u>which way the wave moves</u>
- (c) <u>Draw a small particle</u> on the wave, with <u>arrows to show which way it moves</u>.

Direction of wave travel and energy transfer

2. The graph shows a wave. Each vertical square represents <u>1mm</u>. Work out the <u>amplitude of the wave</u>.

Half the wave is around 2.2 squares, so the amplitude is 2.2mm

In Summary...

- Revision should be an active process
 - Summarising / Processing information
 - Answering questions
 - Not just reading/copying
- 2. Using a revision guide
 - Make notes
 - Answer questions
 - Write questions and test with a friend/family member

